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Multiscale interaction of inertial particles with turbulent motions
in open channel flow
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Direct numerical simulations two-way coupled with inertial particles are used to
investigate the particle distribution and two-way coupling mechanisms in turbulent open
channel flow. In particular, the relationship between low- and high-inertia particles and
the distinct large-scale motions (LSMs) and very-large-scale motions (VLSMs) which
are characteristic of high-Reynolds-number, wall-bounded turbulence are examined. To
do this, two methods of spatial filtering are applied to isolate the effects of LSMs versus
VLSMs and separately analyze their interactions with inertial particles. One method of
filtering the VLSMs from the flow is via artificial domain truncation, which alters the
mean particle concentration profile and particle clustering due to the absence of VLSMs.
The second method uses on-the-fly low- and high-pass filtering on the velocity field seen by
the particles, so that as the simulation progresses the particles can only couple with certain
scales of the flow. The results show that turbophoretic drift of particles toward the wall
and the resulting increase in near-wall concentration is underpredicted without VLSMs,
whereas the small-scale clustering and two-way coupling effects are mainly determined
by particle coupling with LSMs. In the inner layer, the elongated streamwise anisotropic
particle clustering can be reproduced by coupling solely with LSMs for low Stokes number.
However, we do not observe a similar particle clustering behavior in the outer layer as seen
in the full simulation by coupling particles with either LSMs or VLSMs at high Stokes
numbers. This indicates that the organized particle structures are formed by the joint action
of LSMs and VLSMs, especially for high-Stokes-number particles in the outer layer. The
implications of these scale interactions are discussed in the context of large eddy simulation
(LES) of one- and two-way coupled flows.
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I. INTRODUCTION

Across a wide variety of engineered and natural systems, inertial particles are often suspended
and transported by turbulent motions, and they have the potential for exchanging momentum and
energy with the surrounding flow in complex ways. In particular, we are motivated by systems
where the flow Reynolds number is large, allowing for multiscale interactions between individual
particles and a full spectrum of turbulent motion. In the environment, this scenario occurs frequently,
including sand and dust suspensions [1,2], ocean spray and aerosol generation [3], pollutants in the
atmospheric boundary layer [4], cloud droplet motion and collisional growth [5], and the transport
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of various constituents in rivers [6]. Many of these systems occur near a solid boundary, and thus
canonical wall turbulence provides a favorable test bed for studying particle-turbulence interaction.

In wall turbulence, so-called large-scale motions (LSMs) play a crucial role in determining the
structure and the dynamic processes of the entire inner layer [7]. The LSMs in the inner layer have
characteristic lengths of λ+

x = O(1000) and widths of λ+
z = O(100) [7,8], where x and z are the

streamwise and spanwise directions, respectively (the superscript “+” refers to normalization based
on viscous scales, where δν , uτ, and τν ≡ ν/u2

τ correspond to the viscous length scale, velocity
scale, and timescale, respectively). In the outer layer, so-called very-large-scale motions (VLSMs)
are observed in a variety of different wall turbulence flow configurations [9–11], and carry 40–65%
of the kinetic energy and 30–50% of the Reynolds shear stress [12]. The spanwise wavelength of
VLSMs scales as λz = O(h) while their streamwise wavelength is approximately λx = O(10h),
where h is the boundary layer thickness in a turbulent boundary layer or half of the gap size in
turbulent channel flow [9,10,13,14].

These distinct, multiscale turbulent structures result in a corresponding wide range of particle-
to-fluid timescale ratios which vary as a function of wall-normal height, complicating simple
descriptions of particle transport in wall turbulence [15–24]. Indeed many of these complexities
exist even in wall-free shear flows [25], highlighting the need for better understanding of these
phenomena. In the inner layer of wall-bounded flows, the strongly coherent ejection and sweep
motions govern the particle-transfer mechanisms [18]. Conceptually, inertial particles near the
wall are swept into low-speed streaks, from whence they are ejected again into the flow [26].
This in turn changes the ejection and/or sweep intensities [27], modifying near-wall turbulence
nonmonotonically as a function of particle Stokes number [22]. As a result, the regeneration
cycle of LSMs in the inner layer is modulated [23]. During this process, particles can be trapped
within low-speed streaks for extended periods of time [18], linking this clustering process with
turbophoresis [28,29]—an effect experimentally observed by Fessler et al. [15]. The characteristic
spanwise spacing of particle clustering structures is about 100 wall units in turbulent channel flow
[30], coincident with that of the spanwise LSM spacing. A large majority of the numerical work on
particle-turbulence interaction in wall-bounded turbulence focuses on these inner layer dynamics.

In the outer layer, it remains computationally challenging to simulate particle-laden flow in
domains which are of sufficient size to fully resolve the VLSMs, leading to a relative lack of
understanding of particle coupling with outer-scale motions. Bernardini et al. [30] uses direct
numerical simulation (DNS) to study particle clustering in VLSMs by exploiting the very-large-
scale coherent motions which occur in turbulent Couette flow even at relatively low Reynolds
numbers [31]. These coherent “rollers” in Couette flow [32,33] exhibit many of the same inner-outer
coupling characteristics as in high-Reynolds-number boundary layers, but can be found at Reynolds
numbers as low as Reτ = 167 (where Reτ ≡ uτ h/ν is the Reynolds number based on friction
velocity uτ , channel half-height h, and kinematic viscosity ν). In their study, Bernardini et al. [30]
find a clear organization of particles with a spanwise spacing matching that of the very-large-scale
Couette motions. However, these motions are not necessarily equivalent to the VLSMs observed in
turbulent channel flow [11].

An alternative approach to studying particle-turbulence interactions with VLSMs is to perform
DNS, but using a truncated domain size to save computational cost. This strategy induces artificial
correlations in the streamwise direction, but this may have minimal impact on certain flow statistics
[32]. Sardina et al. [20] studied the effect of truncating the domain size on particle distributions in
turbulent channel flow and reported an increase in particle concentration at the wall of up to 20%
at Reτ = 180. They attributed this difference to the possible correlation of the turbulence and the
near-wall particle aggregates in the truncated domain—effects which do not exist in a sufficiently
large domain. As noted above, however, Reτ = 180 is not high enough to separate the inner and
outer regions, although weak VLSMs do still exist at this Reynolds number [34,35]. Furthermore,
the recent work of Wang et al. [36] finds that in turbulent open channel flow up to a Reynolds number
Reτ = 950, truncating the domain size results in errors both in the particle concentration statistics as
well as the particle velocity statistics. This discrepancy is a function of the particle Stokes number
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and is largest for the Stokes numbers which cause particle accumulation in the VLSM-induced
turbulent structures near the wall.

In addition to DNS, large eddy simulation (LES) can also be used with Lagrangian tracking to
study high-Reynolds-number, particle-laden flows. Here, the fluid velocity at the particle position is
not exactly known, but only a filtered (i.e., resolved) fluid velocity is available [37]. In particle-laden
wall turbulent flow, Wang and Squires [38] show that LES predicts particle clustering reasonably
well both near the wall and along the channel centerline for particles with St+ = O(10–1000) at
Reτ = 180 and 640 (where St+ ≡ τp/τν is the Stokes number based on the particle acceleration time
τp and the viscous wall time τν). For lower Stokes numbers, Marchioli et al. [39] find that LES of
St+ = O(0.1–100) particles underestimates the particle wall accumulation and local segregation for
Reτ = 180. Fede and Simonin [40] show that particle accumulation and clustering is significantly
influenced by the timescales of the unresolved subgrid motions and that it is therefore necessary
to develop an accurate closure model for the interaction between inertial particles and subgrid
motions in order to achieve accurate particle-laden LES (see also Jin et al. [41]). In the context of
wall-bounded turbulence as described above, VLSMs would be resolved on an LES computational
grid and could therefore influence particles directly, while LSMs would either be insufficiently
or completely unresolved and would require subgrid treatment. For inertial particles, this subgrid
treatment is not necessarily straightforward, since particle trajectories are the integrated result of
the entire range of turbulent motions (see, for example, Pitton et al. [42]). It is therefore the primary
goal of this study to distinguish between the role of LSMs and VLSMs, as identified via sharp cutoff
filters consistent with LES formulations, on particle transport and particle-turbulence coupling, so
that it is made clear which effects must be included in any future subgrid model development.

Along these lines, Wang and Richter [24] examine the effects of inertial particles on VLSMs in
open channel flow using DNS at Reτ = 550 and Reτ = 950. They use a domain size of Lx = 6πh
and Lz = 2πh, which is comparable to the domain size used by Del Álamo and Jiménez [10] in
single-phase turbulent channel flow. While not yet in an asymptotic regime [43], these Reynolds
numbers are sufficiently high to produce characteristic signatures of VLSMs in the turbulent
kinetic energy spectra and allow for investigating particle-turbulence coupling. Two distinct particle
clustering phenomena appear in the inner layer and outer layer, corresponding to different particle
Stokes numbers. One is the well-established particle clustering in near-wall streaks in the inner layer
(e.g., St+ = 24.2), and the other is a new type of organized particle clustering structure in the outer
layer (e.g., St+ = 182). The organized structure in the outer layer, however, is distinct from that
observed in turbulent Couette flow by Bernardini et al. [30].

While using DNS (e.g., Wang and Richter [24]) provides insight into how particles of varying
inertia influence a full range of turbulence, the nonlinearities involved make it quite challenging to
differentiate between which motions, namely the LSMs and VLSMs, are responsible for the various
clustering and two-way coupling features. This has obvious implications on the design of future
subgrid schemes, particularly for two-way coupled flows where particles can modify the fluid. For
example, perhaps it is reasonable to assume that high-Stokes-number particles simply interact with
resolved motions, and therefore no subgrid treament is needed; this is the strategy of Yamamoto et al.
[44], for example. Likewise, if low-Stokes-number particles only interact with subgrid motions,
perhaps a judicious choice of subgrid velocity is sufficient (e.g., Park et al. [45]). As noted by Wang
and Richter [24], however, a much more difficult situation may arise: Particle-turbulence interac-
tions may occur at scales not resolved in LES, but have large impacts on VLSMs and other resolved
motions. Or perhaps, since Lagrangian trajectories are the integrated effect of all scales of motion,
the particle locations at the resolved scale are not correct, thereby precluding an accurate two-way
coupling. This kind of upscale influence poses a serious challenge for particle-laden LES, and the
current study is devoted to better elucidating the scale interactions by using multiple forms of filter-
ing. We begin by investigating the effects of truncating the domain size, in an effort to isolate particle
interactions with LSMs (i.e., exclude VLSMs). However, as discussed above, truncating the domain
is not an entirely ideal method for calculating particle dynamics. Therefore, as a second method, we
isolate LSMs and VLSMs and their coupling effects independently in the same turbulent flow via
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spatial filtering of velocity field seen by the particles. While artificial, this technique allows us to
pinpoint a set of clustering and coupling mechanisms that would, and would not, be required in a
particle-laden LES subgrid model. We restrict ourselves to mass loadings of O(0.1), where two-way
coupling effects are small but non-negligible, and expect that at higher particle concentrations, many
of these nonlinearities may be enhanced due to particle collisions and other high-loading effects.

II. SIMULATION METHOD AND PARAMETERS

A. Numerical method

Direct numerical simulations of the carrier phase are performed for an incompressible Newtonian
fluid. A pseudospectral method is employed in the periodic directions (streamwise x and spanwise
z), and second-order finite differences are used for spatial discretization in the wall-normal (y)
direction. The solution is advanced in time by a third-order Runge-Kutta scheme. Incompressibility
is achieved via the solution of a pressure Poisson equation. The fluid velocity and pressure fields are
a solution of the continuity and momentum balance equations in Eqs. (1) and (2), respectively:

∂u j

∂x j
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ f

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
+ 1

ρ f
Fi. (2)

Here ui is the fluid velocity, p is the pressure, Fi is the particle feedback force to the carrier phase
computed by summing and projecting the particle force to the nearest Eulerian grid points, ν is the
fluid kinematic viscosity, and ρ f is the fluid density.

Particle trajectories and particle-laden flow dynamics are based on the point-force approximation
where the particle-to-fluid density ratio r ≡ ρp/ρ f � 1 and the particle size is smaller than the
smallest viscous dissipation scales of the turbulence. As a consequence of this and the low volume
concentrations (a maximum bulk volume fraction of 	V less than 1 × 10−3), only the Schiller-
Naumann [46] hydrodynamic drag force is considered. The velocity of particle n is governed by
Eq. (3) and particle trajectories are then obtained from numerical integration of the equation of
motion in Eq. (4):

dun
p,i

dt
= f n

i , (3)

dxn
i

dt
= un

p,i, (4)

where the drag is given by

f n
i = 1
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[
1 + 0.15

(
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p

)0.687](
un

f ,i − un
p,i

)
. (5)

Here, τp = ρpdp
2/(18ρ f ν) is the Stokes relaxation time of the particle, and the particle Reynolds

number Ren
p = |un

f ,i − un
p,i|dn

p/ν is based on the magnitude of the particle slip velocity (un
f ,i − un

p,i )
and particle diameter dn

p . In this work, the average Ren
p is less than 1.0, which is far smaller than

the suggested maximum Rep ≈ 800 for the Stokes drag correction in Eq. (3). As a result of the low
Rep, the correction to the Stokes drag is minimal in this study. Other terms in the particle momentum
equation are neglected since they remain small compared with drag when the density ratio r � 1
[47]. In all simulations, particles are initially distributed at random locations throughout the channel.
Particle-particle collisions are not taken into consideration, and we exert a purely elastic collision
between particles and the lower wall and the free surface of the open channel flow. Gravity is not
included so as to focus specifically on the role of turbulence in particle transport.

Since the projection method of treating the coupling of point particles can in certain cases be
grid dependent, other techniques have been developed which can be used to account for two-way
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TABLE I. Parameters of numerical simulations.

Type 1 large domain
Nx × Ny × Nz = 1024 × 128 × 512

Lx × Ly × Lz = 6π × 1 × 2π

L+
x × L+

y × L+
z = 10367 × 550 × 3456


x+ × 
y+(wall, surface) × 
z+ = 10.1 × (1, 7.2) × 6.75

Type 2 small domain
Nx × Ny × Nz = 128 × 128 × 128

Lx × Ly × Lz = 2.5 × 1 × 1.5
L+

x × L+
y × L+

z = 1375 × 550 × 825

x+ × 
y+(wall, surface) × 
z+ = 10.7 × (1, 7.2) × 6.45

Type Num 	m ρp/ρ f 	v Np τp St+ StLSM StV LSM

1 case0 Unladen flow
2 case0small Unladen flow

1 case1 0.14 160 8.75 × 10−4 7.33 × 106 5.1 24.2 0.3025 0.044
1 case1LSM 7.33 × 106

1 case1V LSM 7.33 × 106

2 case1small 2.32 × 105

1 case2 0.14 1200 1.17 × 10−4 9.8 × 105 38.2 182 2.275 0.331
1 case2LSM 9.8 × 105

1 case2V LSM 9.8 × 105

2 case2small 3.1 × 104

coupling in particle-laden flows. For example, Capecelatro and Desjardins [48] use a volume
filtering operator to replace the point sources by smoother, locally filtered fields. Recently, Sardina
et al. [49] use a similar scheme to calculate the back-reaction term for small bubbles. In efforts to
account for far-field disturbances from the particle on the interpolated field, Gualtieri et al. [50]
present an exact regularized point particle method which applies a Stokeslet approximation. Akiki
et al. [51] introduce an pairwise interaction extended point-particle model which attempts to account
for the microscale flow induced by the neighboring spheres by making use of their precise location.
It is the goal of all of these techniques to attempt to mimic finite-size particles and fully resolved
simulations with an acceptable computational cost, particularly when local particle concentrations
are large. For the current model, we validate our implementation of the point particle method in
Wang et al. [52], where comparisons against the code of Capecelatro and Desjardins [48] and the
experiments of Fong et al. [53] show that for the volume fractions and particle Stokes numbers used
herein, the errors incurred from our method of two-way coupling are small.

B. Numerical parameters and domain setup

The flow configuration of interest is pressure-driven open channel flow (note that by “open
channel” we refer to the boundary conditions of our setup and do not imply that this is a solid-liquid
flow; indeed the density ratio used is characteristic of gas-solid flows). A no-slip condition is
imposed on the bottom wall and a shear-free condition is imposed on the upper surface; such
boundary conditions have been proven capable of capturing many of the phenomena (e.g., VLSMs)
seen in experiments with shear-free upper boundaries—see Refs. [14,16,54]. Grid independence
and single-phase flow validation against Yamamoto et al. [55] at Reτ = 200 can be found in Wang
and Richter [24].

An overview of the simulation cases is presented in Table I. The friction Reynolds number is
Reτ ≡ uτh/ν = 550, where h is the depth of the open channel. In particle-laden flow, the time
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evolution of the flow Reynolds number is monitored during the simulation and we find that the
two-way coupling has a negligible effect (less than 1%) in modifying the Reynolds number with
the current mass loading. The “large domain” has been demonstrated to fully capture VLSMs in the
outer layer, and the streamwise turbulent kinetic energy spectrum is nearly unchanged compared
with a doubled domain size [24].

In the inner layer (y+ < 100), an autonomous regeneration mechanism maintains near-wall
turbulence (above y+ ≈ 20), where the characteristic scale of LSMs is roughly LLSM,+

y ≈ 80. Wang

et al. [56] define a characteristic timescale τLSM,+
f = LLSM,+

y /max(v′+
rms|w′+

rms) (where subscript
“rms” refers to the root-mean-square and the max takes the larger of the spanwise or wall-normal
rms velocity fluctuation), which is related to the LSMs and is approximately equal to 80. In the
outer layer, the VLSMs nearly extend from the bottom wall to the upper free surface, where
their characteristic length scale is found to be LV LSM,+

y ≈ 550. We similarly define a characteristic

timescale τV LSM,+
f = LV LSM,+

y /max(v′+
rms|w′+

rms) specific to VLSMs, which is approximately 550.

From these, two Stokes numbers are defined for each particle, denoted by StLSM ≡ St+/τLSM,+
f

and StV LSM ≡ St+/τV LSM,+
f . The ratio dp/ηK is maintained at a value of approximately 0.42, where

ηK is the Kolmogorov length, and the particle Reynolds number remains O(1) or lower. 	m is the
bulk particle mass concentration in the domain, and Np is the total particle number.

As stated above, the overarching goal of this work is to use spatial filtering to untangle the
scale dependence of particle-turbulence interactions, particularly when LSMs and VLSMs coexist
in the turbulent flow. In our former work [24], low-Stokes-number particles of St+ = 24.2 (StLSM =
0.3025) are more preferentially located within low-speed regions in the inner layer, whereas high-
Stokes-number particles of St+ = 182 (StV LSM = 0.331) tend to form distinct clustering structures
in the outer layer. Furthermore, Wang et al. [36] systematically study the effect of domain size on
particle one-point statistics for St+ ranging from 2.42 to 908 at Reτ = 550 and 950, and they find
that the domain size has the strongest effect on particles of St+ = O(10), but little effect on particles
of St+ = O(100). Based on these distinct dynamics, we choose these two particular Stokes numbers
for the current study, corresponding to case1 and case2 in Table I, since they exhibit a preferential
response to the timescales associated with LSMs and VLSMs, respectively.

Two approaches are used to artificially filter the effects of certain spatial scales from the
particle-turbulence coupling. The first is by simply using domain truncation to effectively remove
VLSMs from the flow by restricting the size necessary to sustain them. These simulations are
referred to as “small” in Table I. The truncated cases are used to contrast the particle dynamics in
flows with nominally the same Reynolds number but with differences in the nature of the coherent
structures—i.e., LSMs and their regeneration are captured on the small grids, while VLSMs are not.
These results are presented in Sec. III A. The second method uses the large domain size (sufficient
size to capture VLSMs) but applies spatial filtering to the velocity field seen by the particles. Here,
we use a low-pass filter for examining particle interactions with only VLSMs and a high-pass
filter for isolating interactions with LSMs, in order to isolate individual scale couplings and
further investigate the mechanism of small-scale particles affecting large-scale motions (a challenge
for LES subgrid model development) [23]. These results are presented in Sec. III B. It should
be emphasized that we do not claim that these filtering scenarios are somehow representations
of specific physical systems; rather, they are tools for decoupling and better understanding the
nonlinearities which exist when particles interact with a full range of turbulent motion. We also
note that this artificial filtering technique, while providing key insights into the multiscale particle-
turbulence interaction problem, necessarily leaves some questions unanswered. For example, other
strategies would need to be used to better distinguish scale effects on Lagrangian trajectories, since
our filtering operators modify the locations of the particles relative to where they would have been
otherwise. As stated above, our goal is to focus specifically on the role of scale filtering (i.e., that
associated with LES) and how one- and two-way coupling responds in this context; further work
would be required to complete the picture.
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III. RESULTS

A. Filtering by domain truncation

The distribution and transport of inertial particles are determined by the multiscale turbulent
structures in wall turbulence, especially at Reynolds numbers which support multiple decades of
spatial and/or temporal scale separation. For unladen wall-bounded turbulence, several studies have
sought to quantify the effects of domain size [57–59], and in particular identify the minimum
domain extent which still captures accurate one-point statistics while avoiding the effects of
periodic boundary conditions in the streamwise or spanwise directions. These efforts have obvious
implications for minimizing computational costs while performing DNS of high-Reynolds-number
turbulent flows.

In the viscous and buffer layers, Jiménez and Moin [60] identify a minimal box with size L+
x =

300–600 and L+
z = 80–160 which is able to isolate the wall-attached structures. The low-order

turbulence statistics are in good agreement with experiments in the near-wall region, which is due
to the fact that VLSMs carry little Reynolds stress near the wall in full-spectrum turbulence and
are largely independent from the autonomous LSMs [61]. In an effort to understand near-wall
turbulence maintenance and transition, Hamilton et al. [62] use the smallest possible domain to
study the regeneration cycle of LSMs in the inner layer at low Reynolds numbers.

In the logarithmic and outer regions, Flores and Jiménez [57] show that similar minimal domains
exist for the logarithmic and outer layers of turbulent channels, but that size (Lx = 6h and Lz = 3h)
is much larger than in the work of Jiménez and Moin [60]. Similarly, Lozano-Durán and Jiménez
[59] demonstrate that a domain size of Lx = 2πh and Lz = πh is sufficiently large to reproduce the
one-point statistics of larger boxes at Reτ = 547–4050, and Hwang and Cossu [58] show that the
self-sustaining nature of VLSMs is maintained only if the streamwise and spanwise box sizes are
larger than the minimal values Lx = 3h and Lz = 1.5h at Reτ = 550.

Meanwhile in particle-laden flow, Sardina et al. [20] compare domain sizes of [Lx, Lz] =
[4πh, 4π/3h] ([L+

x , L+
z ] = [2260, 754]) with [Lx, Lz] = [12πh, 4πh] in a turbulent channel at

Reτ = 180. The smaller of these two domain sizes is larger than the minima suggested by Hwang
and Cossu [58] and Lozano-Durán and Jiménez [59], indicating that both capture any effects of
VLSMs in the outer layer, mixing the effects of LSMs and VLSMs on particle transport (although
the VLSMs, if even present, are very weak at such a low Reynolds number). At higher Reynolds
numbers Wang et al. [36] show that domain truncation alters the process of turbophoresis and
can modify one-point particle statistics, including concentration. In the following, we exploit
these truncation effects to contrast particle interactions with LSMs alone versus the full range of
turbulence.

1. Unladen energy spectrum

For the truncated simulations, we choose a domain size of [Lx, Lz] = [2.5h, 1.5h] to exclude the
VLSMs in the outer layer [58], corresponding to [L+

x , L+
z ] = [1375, 825] in wall viscous units.

The streamwise extent is not sufficiently long to exclude the correlation of LSMs in the inner
layer. The premultiplied, two-dimensional energy spectrum of streamwise velocity, kxkz	u′u′ , where
	u′u′ = 〈û′(kx, kz, y)û′∗(kx, kz, y)〉, is shown in Fig. 1 for Reτ = 550 for the unladen case. Here, û′
is the Fourier coefficient of u′, kx is the streamwise wave number, and kz is the spanwise wave
number (λx and λz are the corresponding streamwise and spanwise wavelengths). In Fig. 1(a), we
can qualitatively see that the small domain (case0small ) generally captures the turbulent structures
in the inner layer (y+ < 100). However, the VLSMs in the inner and outer layers are completely
lacking in the small domain simulation, by design.

Cross sections of the spectra at y+ = 15 and y+ = 273 are compared between case0 and
case0small in Figs. 1(b) and 1(c), respectively. In both of these figures, results from the DNS of Del
Álamo and Jiménez [10] are also included as a reference, since these come from turbulent channel
flow at the same Reτ and should therefore have a similar spectrum. The contour of kxkz	u′u′ for
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FIG. 1. Premultiplied two-dimensional energy spectrum kxkz	u′u′/u2
τ as a function of λx and λz for case0

and case0small . (a) In the wall-normal direction y, isosurface of 0.1 times the maximum value of the unladen
flow is illustrated. Aqua is case0 and red is case0small . Panels (b) and (c) refer to y+ = 15 and y+ = 273,
respectively. In panels (b) and (c), the filled contours represent the large domain, lines are from the small
domain, and dotted lines are from the work of Del Álamo and Jiménez [10].

the large domain agrees well with the results from Del Álamo and Jiménez [10]. In the inner layer,
the energetic LSMs in case0small are nearly the same as in case0, whereas the tail of the spectrum
[i.e., λx > 5h in Fig. 1(c)] represents the deep u modes [10] or VLSM footprints [11], which are
imposed by VLSMs from the outer layer and therefore are absent in case0small . In the outer layer, the
premultiplied two-dimensional energy spectrum of case0small is significantly different from case0,
which indicates that VLSMs are not captured in the smaller domain simulation, as expected.

As another means of quantifying the scales of motion in the unladen simulations, the spanwise
wavelengths λz,max of the most energetic structures obtained from the one-dimensional (1-D)
premultiplied energy spectra of u′ for case0 and case0small are shown in Fig. 2. Results of Abe

FIG. 2. Spanwise wavelengths of the most energetic structures obtained from the premultiplied energy
spectra of u′ for case0 and case0small at Reτ = 550 compared with results of Abe et al. [63] at Reτ = 395 and
640 in channel flow. (a) Wall units; (b) in outer units.
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FIG. 3. Mean particle volume concentration 	v as a function of wall-normal direction, scaled by 	v .
(a) Low Stokes number, comparison between case1small and case1; (b) high Stokes number, comparison
between case2small and case2. (c) The difference between the small and large domains, normalized by the
results of large domain simulation.

et al. [63] at Reτ = 395 and 640 in turbulent channel flow are plotted as well for comparison, since
their domain sizes are sufficiently large for capturing VLSMs ([Lx, Lz] = [12.8h, 6.4h]). In general,
the scale of λz,max increases with wall-normal height and the scale of λz,max in open channel flow
is wider than it is in channel flow [63]. In the inner layer, where turbulent channel flow and open
channel flow are expected to exhibit similar statistics, the energetic structures indeed have very
similar sizes, even for the truncated domain. In the outer layer, however, we see that the primary
effect of truncating the domain is to limit the spanwise wavelength of the most energetic structures,
which actually become similar to turbulent channel flow at the same Reynolds number [63]. It is
this difference in the outer layer, which will allow us to probe the influence of VLSMs on particle
transport.

2. Particle distribution

We now turn our attention to the particle distributions in the large and small domains, with
emphasis on the effect of truncating the VLSM signatures in the small domain. Mean particle
volume concentrations compared between the domain sizes are shown in Fig. 3. For both low- and
high-Stokes-number particles in Figs. 3(a) and 3(b), respectively, there are fewer particles in the
near-wall region of the small domain simulation compared to the large domain simulation, while
the opposite trend is observed in the outer region. This is the same behavior found at Reτ = 180
[20] and Reτ = 950 [36] with similar particle Stokes numbers based on the inner viscous timescale.
The relative difference of mean particle volume concentration is shown in Fig. 3(c). With a truncated
domain, a decrease of up to 20% is found near the wall compared to the large domain. This suggests
that the turbophoretic effect is enhanced in the large domain simulation, owing to the presence
of VLSMs in the outer layer. On the other hand, much of the bulk of the domain sees a larger
concentration of the small domain as compared to the large domain. Low-Stokes-number particles
(case1) see a larger concentration at all points y+ � 15, while large-Stokes-number particles
(case2) have a relative concentration which alternates between positive and negative with increasing
wall-normal distance. This is a result of high-inertia particles (StV LSM = 0.331 of case2) preferably
responding to VLSMs in the large domain as compared to the low-inertia particles (StV LSM = 0.044
in case1). The observed differences due to the truncated domain size effect are consistent with those

044307-9



GUIQUAN WANG AND DAVID RICHTER

FIG. 4. Standard deviation of the normalized Voronoï area σV , normalized by that of a random Poisson
process, σRPP, as a function of height in wall-normal direction of low and high Stokes numbers in small domain
and large domain.

observed by Sardina et al. [20], despite the Reynolds number and thus the effects of VLSMs being
significantly larger in the present work.

As proposed by Monchaux et al. [64,65], a Voronoï diagram can be used to identify and quantify
particle clusters and voids. The standard deviation of the distribution of Voronoï areas is directly
linked to the level of clustering. For the present study, the instantaneous particle locations are
analyzed in six slabs with thicknesses of 2dp at multiple wall-normal distances. Figure 4 displays
the standard deviation (σV ) of the distribution of the normalized Voronoï area V = A/A, where the
inverse of the average Voronoï area A indicates the mean particle concentration. σV is scaled by the
standard deviation of a random Poisson process (RPP; σRPP = 0.52), which would be expected if
particles were randomly distributed. The ratio σV/σRPP exceeding unity indicates that particles are
accumulating in clusters as compared to truly randomly distributed particles.

From Fig. 4, it is observed that in the inner layer (y+ = 50) there are only small differences
in the accumulation tendencies between the small and large domains. This is true for both Stokes
numbers, indicating that clustering in this region is not directly affected by the presence of VLSMs
in the outer layer. Away from the wall (150 � y+ � 457), the particle clustering effect is stronger
in the large domain simulation than it is in the small domain simulation, and this is true for both
Stokes numbers. Near the free surface, the particle clustering is nearly the same for the high Stokes
number particles, whereas the low-inertia particles see more preferential accumulation in the larger
domain.

Based on the analysis of the mean particle distribution and the clustering behavior, it is evident
that in the inner layer, the particle concentration increases up to 20% due to the combined influence
of VLSMs and LSMs. In the outer layer, particles tend to form strong clusters due to the influence of
VLSMs, and this aids the turbophoretic drift of inertial particles toward the lower wall. Thus, even
while particle clustering behavior at the wall is independent of VLSMs (cf. Fig. 4), modification to
the turbulent structures in the outer layer and the resulting change in particle clustering weakens the
mean concentration at the wall.

B. Filtering of velocity seen by particles

As discussed in the previous section, the removal of VLSMs by domain truncation modifies the
bulk transport of particles. As in other studies [20,36], it is seen that mean particle concentrations
are altered when the VLSM structures are absent and that clustering characteristics are modified
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FIG. 5. Instantaneous contours of streamwise velocity fluctuation on a wall-parallel plane at y+ = 100
(and domain boundary walls) in single-phase flow (case0), normalized by uτ . (a) Full simulation containing all
modes; (b) the same flow field but only associated with VLSMs, containing modes with λx > 5h, λz > 0.75h;
and (c) the same flow field but only associated with LSMs, containing modes with λx < 5h, λz < 0.75h.

as well. Despite this, however, removing VLSMs by shrinking the computational domain does
not fully address the scale interaction question posed in the introduction. To better untangle the
nonlinear interactions between particles of very different Stokes number (i.e., case1 and case2) and
disparate turbulent structures (LSMs and VLSMs), in this section we retain the large domain size,
but via spatial filtering only allow particles to couple with specific scales of the turbulent flow.
As noted above, this is a purely artificial process for isolating different scale interactions (i.e., not
meant to represent a physical system), but will aid in future development of LES subgrid models by
highlighting how small-scale particle-turbulence coupling influences large-scale motions.

1. Filtered fluid velocity

The filtered fluid velocity fields used for isolating LSMs and VLSMs (only used to couple with
particles), ũ, are computed as

ũ(x, y, z, t ) = F−1

{
û(λx, y, λz, t ), if [λx, λz] ∈ LSMs or VLSMs

0 otherwise, (6)

where F−1 is the inverse Fourier transform, and û(λx, y, λz, t ) is the 2-D Fourier transform of the
fluid velocity u(x, y, z, t ) in the two homogeneous (x and z) directions at every plane in the wall-
normal direction at every time step. We define the length scale of the LSMs as λx < 5h, λz <

0.75h and that for VLSMs as λx > 5h, λz > 0.75h, in accordance with that used by Del Álamo and
Jiménez [10]. In the sections below, the cases will be referred to as case1, 2LSM and case1, 2V LSM

when particles are coupled with LSMs or VLSMs, respectively (as denoted in Table I).
The instantaneous streamwise velocity fluctuation (u′) on a wall-parallel plane at y+ = 100

(and sidewalls) is shown in Fig. 5(a), and the corresponding spectral information and turbulent
kinetic energy can be found in Wang and Richter [24]. Clearly, the multiscale and turbulent field is
composed of both large-scale and very-large-scale motions. By applying Eq. (6), the instantaneous
velocity fields containing only LSMs or VLSMs can be retrieved from the full simulation at any
time step as shown in Figs. 5(b) and 5(c), respectively. The elongated, streamwise VLSMs are
characterized by alternating low-speed and high-speed regions in the spanwise direction, extending
from the bottom wall to the free surface in the wall-normal direction [Fig. 5(b)]. The LSMs are also
elongated in the steamwise direction with alternating low-speed and high-speed regions [Fig. 5(c)],
similar to the VLSMs, but at a much shorter spatial scale and only near the lower wall. It is evident
from Fig. 5 that the domain size captures the many streamwise extents of LSMs, while some degree
of correlation appears to occur for VLSMs in the streamwise direction. This has been tested on
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FIG. 6. Mean particle volume concentration in wall-normal direction, compared between the full and
filtered velocity fields, scaled by 	v . [(a), (b)] Low Stokes number, comparison of case1, case1LSM , and
case1V LSM . [(c), (d)] High Stokes number, comparison of case2, case2LSM , and case2V LSM . [(b), (d)] The relative
difference between the filtered concentrations and the full simulation, normalized by the results of the full
simulation.

larger domains [36], and the turbulence and particle statistics associated with VLSMs are virtually
unchanged with larger domains.

Therefore, at every Runge-Kutta substep, a new full-spectrum velocity field is produced by the
Eulerian solver, a copy of this field is then filtered based on Eq. (6), and inertial particles are only
allowed to interact with this filtered flow field ũ. Bulk momentum conservation is still maintained,
and the particle feedback forces are computed based on their interaction with the filtered field.

2. Particle distribution

The mean volume concentrations of particles coupled to the filtered velocity fields are compared
to the full simulation in Fig. 6—for low Stokes number in Figs. 6(a) and 6(b) and for high
Stokes number in Figs. 6(c) and 6(d). For both low- and high-inertia particles coupled to LSMs
(case1, 2LSM ), the wall-normal particle concentration profile has a similar shape compared to the full
simulations (case1, 2). Quantitatively, compared with the full simulations, case1LSM and case2LSM

underpredict (less than ≈50%) the particle concentration in the region of y+ � 200, whereas
case1LSM and case2LSM overpredict (less than ≈50%) the particle concentration in the region of
y+ � 200. The trend is similar to that observed in the truncated domain as discussed in Sec. III A 2.
From this, we confirm that the particle concentration and the effects of turbophoresis are truly
underpredicted throughout much of the domain when VLSMs are absent.

Particle transport behavior by VLSMs, however, is distinctly different for both the low- and
high-inertia particles as compared with the full simulations. For low-inertia particles as shown in
Figs. 6(a) and 6(b), the particle wall-normal concentration profile of case1V LSM is flatter than it
is in the full simulation. This is due to the fact that compared to the timescale of the outer-scale
motions, the low-inertia particles effectively act as tracers and thus do not exhibit any turbophoretic
drift. At the same time, the particles do not feel the small-scale motions at the wall since they are
filtered out, and thus the profile remains flatter there as well. Quantitatively, case1V LSM seriously
underpredicts (exceeding 100% in magnitude) the particle concentration in the near-wall region of
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FIG. 7. Instantaneous snapshots of particle locations (black dots). [(a), (c), (e)] Low-Stokes-number
particles; [(b), (d), (f)] high-Stokes-number particles. (a) case1; (b) case2; (c) case1LSM ; (d) case2LSM ; (e)
case1V LSM ; (f) case2V LSM .

y+ � 40, whereas it overpredicts (less than 50% in magnitude) the particle concentration in the
region of y+ � 40.

For high-inertia particles, as shown in Figs. 6(c) and 6(d), the shape of the particle concentration
profile of case2V LSM is generally similar to that of the full simulation except very close to the wall
(y+ � 3). In this near-wall region, case2V LSM overpredicts the particle concentration (3 � y+ � 13)
by upward of 50%. Elsewhere in the domain (13 � y+ � 530), the particle concentration profile
agrees fairly well with the full simulation. The relatively minor differences between case2 and
case2V LSM throughout the bulk of the domain suggest that the transport of high-inertia particles are
largely due to the dynamics of the VLSMs, except very close to the boundaries. This is consistent
with the idea that these larger particles would act ballistically with regards to the LSMs. For the
low-inertia particles, it is clear that LSMs play a critical role in distributing the particles throughout
the domain [case1V LSM in Fig. 6(a)], but it is also evident that VLSMs play a role as well [case1LSM

underpredicting in the range 10 < y+ < 100 in Fig. 6(a)].
Figure 7 presents instantaneous snapshots of particle locations (black dots) for the cases under

consideration. Compared to Fig. 7(a) for the full simulation (case1), we observe in Fig. 7(e) that
particles distribute more randomly when they only couple with VLSMs (case1V LSM) for low Stokes
number. When coupled to LSMs, the particles qualitatively exhibit the particle streaks close to the
wall [Fig. 7(c); these trends will be confirmed statistically below]. The particle response to LSMs
and VLSMs is significantly different for high-inertia particles compared with low-inertia particles.
Figure 7(b) shows that for the full simulation laden with high-inertia particles (case2), there are
two distinct clustering structures: the streamwise elongated particle streaks in the inner layer and
3-D “blobs” of particles in the outer layer. Particles coupled with the LSMs [case2LSM in Fig. 7(d)]
form smaller scale clusters which have both a spanwise and a streamwise periodicity, while particles
coupled with the VLSMs [case2V LSM in Fig. 7(f)] form elongated, anisotropic structures in the outer
layer which differ in shape and strength from those in the fully coupled simulation. In addition,
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FIG. 8. Standard deviation of the normalized Voronoï area σV , normalized by that of a random Poisson
process, σRPP, as a function of height in wall-normal direction for (a) low and (b) high Stokes numbers coupled
with different turbulent structures: full simulation (case1, 2), LSMs (case1, 2LSM ), and VLSMs (case1, 2V LSM ).

Fig. 7 highlights a challenge associated with multiscale particle-turbulence interaction: When only
responding to filtered velocity fields, the particles themselves collect in different regions than they
would have otherwise. Even in the one-way coupled regime, LES subgrid model development
would need to ensure that the influence of unresolved motions on particle trajectories is accurately
represented; the effects on two-way coupling are therefore compounded and conflated.

In order to better quantify the particle clustering behavior shown in Fig. 7, we again employ
a Voronoï diagram analysis, shown in Fig. 8. For the low-inertia particles in Fig. 8(a), the ratio
σV/σRPP is highest in the full simulation (case1) but lowest when particles are coupled only with
VLSMs. In addition, σV/σRPP increases monotonically with increasing wall-normal distance in
case1 and case1LSM , while it decreases slightly in case1V LSM , indicating a weak clustering when the
particle/VLSM response timescale ratio (StV LSM = 0.044) is small. As noted above, the low-inertia
particles effectively act as tracers with respect to the VLSM structures. For the high-inertia particles
in Fig. 8(b), the ratio σV/σRPP is slightly smaller in case2LSM than it is in the full simulation (case2).
However, it is far larger in case2V LSM than it is in case2 due to the strong, elongated features
which form in case2V LSM and are seen clearly in Fig. 7(f). The high-inertia particles clearly respond
preferentially to the timescales of the VLSMs in the outer layer and thus form streaks qualitatively
similar to the VLSM structures seen in Fig. 5(b).

To gain further insight into the anisotropic character of the particle clustering, the two-
dimensional angular distribution functions (ADF) are calculated as defined in Eq. (7), where
particles are taken from a slab with thickness of 2dp:

ADF(r, θ ) =
∑np

i=1 δNi(r, θ )/(δrδθnp)

N/(LxLy)
, 0 � θ � π/2, (7)

where δNi(r) is the particle number between r − δr/2 and r + δr/2 from the center of particle i, and
δNi(r, θ ) is the particle number in a sector between r − δr/2 and r + δr/2 in the radial direction and
θ − δθ/2 and θ + δθ/2 in the angular direction from the center of particle i; θ = 0 and θ = π/2
correspond to the spanwise and streamwise directions, respectively. In the present study, we set δr =
0.08h (δr+ = 44) and δθ = 0.025π to compute ADF(r, θ ). The mean value is from the average of
np particles from multiple snapshots in time. Finally, the distribution functions are normalized by
the surface average particle number in the x-z plane (np/LxLy representing a randomly distributed
particle number density), where np particles are from the two-dimensional x-z slab taken in the
wall-normal direction. Periodic boundary conditions are used for particles near the boundaries in
the streamwise and spanwise directions.

ADF(r, θ ) in the streamwise and spanwise directions corresponding to θ = π/2 and θ = 0 at
two different wall-normal heights (y+ = 17 and y+ = 300) are shown in Fig. 9. For low-inertia
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FIG. 9. The streamwise and spanwise angular distribution function (ADF) of particles in a slab with
thickness of 2dp at two wall-normal heights: near the wall [(a), (c)] at y+ = 17; in the outer layer [(b), (d)]
at y+ = 300. For two Stokes numbers: [(a), (b)] low Stokes number; [(c), (d)] high Stokes number. The insets
of panels (c) and (d) show enlargements of the region r/h < 1.

particles close to the wall, Fig. 9(a), the particle density from a reference particle in the streamwise
direction is higher than in the spanwise direction, corresponding to the elongated anisotropic particle
clustering formed in the inner layer as seen in Fig. 5(a). Compared with the full simulation, the
difference in ADF between the streamwise and spanwise directions still exists in case1LSM , whereas
it diminishes for case1V LSM . This indicates that the elongated anisotropic particle clustering is
similar between case1LSM and the full simulation [see also Figs. 5(c) and 5(a)], whereas the particle
clustering tends to be more isotropic in case1V LSM [Fig. 5(e)]. For low-Stokes-number particles in
the outer region, as shown in Fig. 9(b), the ADF is similar between the streamwise and spanwise
directions in both case1 and case1LSM , corresponding to the quasi-isotropic particle clusters formed
in the outer layer in Figs. 5(a) and 5(b). In case1V LSM , we see that ADF in the streamwise direction
remains larger than unity even at a distance of 2.5h from the reference particle, which indicates that
there are streamwise elongated structures [observed in Fig. 5(b)], but not as pronounced as they are
in the inner layer of case1.

The ADF of the high-Stokes-number particles is shown in Figs. 9(c) and 9(d). Compared
with the full simulation, case2V LSM shows a significant increase of the streamwise ADF and a
sharp difference between the streamwise ADF and the spanwise ADF. The presence of this sharp
difference in both Figs. 9(c) and 9(d) indicates that the elongated anisotropic particle clustering
forms in both the inner layer and outer layer [see also Fig. 5(f)]. Meanwhile, comparing case2LSM

with the full simulation, ADF in the inner layer in both the streamwise and spanwise directions is
slightly smaller than it is in case2 as shown in Fig. 9(c), while the difference is small in the outer
layer as shown in Fig. 9(d).

The ADF profiles clearly show that the different particles respond in distinct ways to LSMs and
VLSMs. As described above, the picture that develops is that low-inertia particles are influenced
both by LSMs (which have a timescale more closely aligned with their own τp) and VLSMs.
High-inertia particles, on the other hand, are more resistant to transport and accumulation triggered
by LSMs, and instead are largely impacted by the dynamics of the VLSM structures. From the
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FIG. 10. Profiles of the slip velocity 
ui(y) = uf ,i − up,i normalized by uτ . [(a), (c)] Streamwise velocity,

u; [(b), (d)] wall-normal velocity, 
v. [(a), (b)] Low Stokes number; [(c), (d)] high Stokes number.

perspective of LES modeling, this would suggest (consistent with others [39,44]) that high-inertia
particles simply coupled to the filtered velocity (i.e., which would fully resolve the VLSMs) may
be able to predict the mean concentration and possibly even certain aspects of the particle spatial
arrangement with sufficiently high accuracy. To better understand this difference between high-
and low-inertia particles, the following section considers the slip velocity between the particle and
filtered velocity fields.

3. Slip velocity

For particles with high inertia, a significant slip velocity (
ui = u f ,i − up,i) can exist, which
describes the exchange of momentum between the fluid and particle phases. A good prediction
of the slip velocities is essential to predicting particle trajectories in particle-laden LES [40],
Reynolds-averaged Navier-Stokes (RANS) coupled laden with Lagrangian particles [66], or two-
fluid modeling approaches [67]. Through the slip velocity, the drag force governs the particle
trajectories and segregation [18], and subsequently modulates the turbulent flow [24,68,69].

In the inner layer of turbulent channel flow, Zhao et al. [70] find that in the streamwise direction
the particles lead the fluid near the wall (
u < 0 in y+ < 20), whereas the particles lag behind
the fluid away from the wall (
u > 0 in y+ > 20); the magnitude of the slip velocity increases
monotonically with particle inertia. For the slip velocity in the wall-normal direction, particles lag
behind the fluid near the wall (
v > 0 in y+ < 50), whereas the particles lead the fluid away from
the wall (
v < 0 in y+ > 50) in Zhao et al. [70]. As shown in Fig. 10, we find a similar trend for
both low- and high-inertia particles in the inner layer for the full simulations. In the outer layer
(y+ > 100), low-inertia particles tend to move toward the wall due to the negative mean drag force
on the particle in the wall-normal direction. At the same time, the positive 
v near the wall indicates
that low-inertia particles tend to move away from the wall in the range y+ < 100. For high-inertia
particles, the wall-normal slip velocity (
v) illustrates that high-inertia particles drift away from
the wall not only in the inner layer but also for a portion of the outer layer (100 < y+ < 300).
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Generally, in the inner layer, low-inertia particles coupled only with LSMs (case1LSM) produce
the same sign and comparable magnitude of the slip velocity in the streamwise and wall-normal
directions as shown in Figs. 10(a) and 10(b), respectively. However, high-inertia particles coupled
with LSMs (case2LSM) underpredict the 
v throughout most of the domain as shown in Fig. 10(d).
In the outer layer, both of the filtering tests with either low- or high-inertia particles tend to
underpredict the magnitude of the wall-normal slip velocity. This again seems to confirm that the
slip velocity is primarily due to particles coupling with LSMs, especially in the streamwise direction
and for low-inertia particles (case1LSM), even while low-inertia particles can still be influenced in
their bulk transport by VLSMs [cf. Figs. 6(a) and 6(b)]. This general conclusion is true even though
the particle distribution itself would be modified if coupled to the full, unfiltered velocity field.
High-inertia particles, on the other hand, coupled only with VLSMs (case2V LSM) do not recover
either slip velocity seen in the full simulation, even in the inner layer as shown in Fig. 10(d), so
while the previous analysis of particle clustering and spatial arrangement would seem to suggest
that high-inertia particles could simply be coupled to VLSMs (or the resolved scales of motion),
this result indicates that if two-way coupling is an important feature, the slip velocity (and thus the
two-way exchange of momentum between phases) is primarily determined by LSMs for both low-
and high-inertia particles. This is particularly true in the streamwise direction [see Figs. 10(a) and
10(c)], whereas high-inertia particles coupled only with VLSMs do recover some of the wall-normal
slip velocity near the wall [in Fig. 10(d)].

It therefore seems that for one-way particle dynamics, namely transport and spatial arrangement
of inertial particles, it might be possible for high-inertia particles to be carried by large-scale
motions (or resolved scales in the context of LES). Not surprisingly, low-inertia particles would
require accurate subgrid treatment, or full resolution of the LSMs to capture their clustering and
turbophoretic behavior. For two-way coupling, on the other hand, the high-inertia particles, while
preferentially responding to the VLSMs, need information from the LSMs, since these dictate the
mean slip velocity between the phases. In the final two sections, the consequences of this are
demonstrated for the Reynolds stress and turbulent kinetic energy budgets in the context of two-way
coupling.

4. Particle feedback to the Reynolds stress budget

The momentum exchange between the particle and fluid phases acts as a direct source-sink in
the fluid Reynolds stress budgets. Particle sources to the u′u′, v′v′, and u′v′ budget are denoted
as �11 = F ′

x u′, �22 = F ′
y v

′, and �12 = F ′
x v

′ + F ′
y u′, respectively [56]. The particle sources are

dependent on the characteristics of particle clusters [71] and also strongly related to the particle
inertia [72]. Furthermore, Wang and Richter [23,24] demonstrate that both indirect and direct
particle modulation mechanisms of LSMs and VLSMs have nonmonotonic relationships with
particle inertia, which can be observed by the particles’ modulation of the Reynolds stress budgets
in spectral space.

Here we repeat a component of our previous analysis [23] and show the three particle source
terms �11 (to the u′u′ budget), �22 (v′v′ budget), and �12 (u′v′ budget) in Fig. 11. In general, inertial
particles coupled with LSMs (case1LSM and case2LSM) produce the same sign and comparable
magnitude as the full simulations, whereas the particle sources are nearly zero for the case of
inertial particles coupled with VLSMs (case1V LSM and case2V LSM). As suggested by the slip
velocities presented in the previous section, this behavior of case1LSM and case2LSM shows that the
particle sources to the Reynolds stress budgets are mainly dictated by the drag force interacting
with small-scale structures (LSMs). This dominance of LSMs in the Reynolds stress budget is
somewhat inconsistent to the direct enhancement mechanism of VLSMs by high-inertia particles
(the enhancement of VLSMs energy related to �12 at high wavelengths in the outer layer) observed
by Wang and Richter [24], suggesting that the direct impact of high-inertia particles on VLSMs
is weak compared to the nonlinear, indirect interaction through LSMs. In other words, the direct
enhancement mechanism of VLSMs cannot be captured simply by artificial coupling between
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FIG. 11. Profiles of the particle feedback terms to Reynolds stress budget: [(a), (d)] particle sources to the
u′u′ budget, �11; [(b), (e)] particle sources to the v′v′ budget, �22; [(c), (f)] particle sources to the u′v′ budget,
�12. [(a)–(c)] Low Stokes number; [(d)–(f)] high Stokes number. All terms are scaled by u3

τ/δ.

high-inertia particles and long-wavelength VLSM structures due to the underlying incorrect slip
velocities in this case [seen in Figs. 10(c) and 10(d)]. It is clear that both turbulent structures
(LSMs and VLSMs) work in tandem to simultaneously determine the correct particle dynamics,
which further works on the local fluid to modulate the turbulence. Again, as stated previously,
this mechanism poses a challenge for LES development of two-way coupled particle-laden flows:
Even for high-inertia particles, it is LSMs which dictate momentum exchange. This upscale (in
spectral space) influence, where both low- and high-inertia particles modify LSMs, which in turn
can modulate VLSMs, is not a feature which could be captured by, say, an enhanced eddy diffusivity.

5. Interphasial energy transfer and particle dissipation

Due to the slip velocity induced by particle inertia, we have shown in Sec. III B 4 that the
particles working on the fluid act as a direct source-sink in the Reynolds stress budgets. At the
same time, the drag force working on the particles represents kinetic energy transferred from the
fluid to the particles. The imbalance between the work transferred from the fluid to the particles
compared to that from the particles to the fluid reflects energy dissipation, which may help describe
the mechanism of drag reduction in particle-laden flow [69].

According to Zhao et al. [69], the time rate of the work done by the local fluid to a particle Ẇp,
the work done by a particle on the local fluid Ẇf , and the dissipation to heat ε are expressed as

Ẇp = 6πμa(u f ,i − up,i )up,i, (8)

Ẇf = −6πμa(u f ,i − up,i )u f ,i, (9)

ε = Ẇp + Ẇf = −6πμa(u f ,i − up,i )(u f ,i − up,i ), (10)

where up,i and u f ,i are the particle velocity and the fluid velocity seen by the particle, respectively.
The quantities Ẇp, Ẇf , and ε are shown in Figs. 12(a) and 12(d), Figs. 12(b) and 12(e), and

Figs. 12(c) and 12(f) for low- and high-Stokes-number particles, respectively. In the inner layer,
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FIG. 12. Profiles of the mean power transferred between fluid and particles: [(a), (d)] from the fluid to the
particle, Ẇp; [(b), (e)] from the particle to the fluid, Ẇf ; [(c), (f)] the particle dissipation, ε. [(a)–(c)] Low Stokes
number; [(d)–(f)] High Stokes number. The mean power is scaled by 6πμau2

τ.

the sign and trend of Ẇp, Ẇf , and ε profiles in full simulations (case1 and case2) are qualitatively
similar to those obtained by Zhao et al. [69] in turbulent channel flow at Reτ = 180. The respective
responses to the various filtering methods are also qualitatively similar to the Reynolds stress
budgets of Sec. III B 4.

The particles exert work on the local fluid in the buffer layer and viscous layer (Ẇp < 0, Ẇf > 0),

whereas the particles receive energy from the fluid (Ẇp > 0, Ẇf < 0) beyond y+ = 40. The energy
transfer between the particles and the fluid is nearly the same between the particles coupled with
LSMs (case1LSM and case2LSM) and the full simulations (case1 and case2). However, as with the
Reynolds stress budgets, large differences are seen between the VLSM coupling cases and the full
simulations, not only in magnitude but also in sign. In the outer layer, both the low- and high-inertia
particles continuously receive energy from the large-scale fluid motions (Ẇp > 0, Ẇf < 0), but
the magnitude is smaller in both artificial coupling tests than it is in full simulation. As shown
in Figs. 12(c) and 12(f), across the whole wall-normal height, the particle dissipation is comparable
between particles coupled with LSMs and the full simulation, whereas ε is negligible in both
case1V LSM and case2V LSM . This confirms that the particle dissipation generally comes from particles
coupling with low-wavelength structures.

Consistent with the above discussions regarding the slip velocity (Fig. 10) and particle feedback
to the Reynolds stress budget (Fig. 11), a similar conclusion can be drawn from the energy transfer
characteristics: Two-way coupling is mainly a result of particle-LSM interaction, especially in the
inner layer, and regardless of particle inertia. The strength of the two-way coupling is rather small
in the case of only coupling with VLSMs in both the inner layer and outer layer. This again suggests
that while VLSMs are important for distributing particles throughout the domain, and although their
strength can be modulated by particles [24,72], it is fundamentally the coupling between LSMs and
particles which dictates energy and momentum transfer between phases.

IV. CONCLUSION

In this study, we investigate the transport of inertial particles by large-scale motions (LSMs) and
very-large-scale motions (VLSMs) in moderate-Reynolds-number (Reτ = 550) open channel flow.
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Two-particle Stokes numbers based on the characteristic timescales of the LSMs and VLSMs are
used, where low-inertia particles with StLSM = 0.3025 preferably accumulate in LSMs in the inner
layer [23] and high-inertia particles with StV LSM = 0.331 tend to form particle clustering structures
associated with VLSMs in the outer layer [24]. While we focus only on two discrete Stokes numbers,
an intriguing extension of this analysis is in the direction of polydispersed systems, where a broad
spectrum of particle inertia would be interacting with a broad range of turbulent motions. Our results
indicate that there would be multiple nonlinear interactions occurring simultaneously in this case,
which lies outside the scope of the present effort.

The first test uses a truncated domain size to isolate VLSMs, since VLSMs can only be captured
in a sufficiently large domain. By comparing the flow field between a small domain and large
domain in single-phase flow, it is confirmed that the small domain can capture the correct length
and intensity of LSMs in spectral space within the inner layer, even in the absence of VLSMs. As a
consequence, an increase of up to 20% of the near-wall particle concentration is found in the large
domain simulation as compared to the small domain. From a Voronoï tessellation analysis, particle
clustering is stronger in the large domain simulation than it is in small domain simulation.

We then perform a series of artificial coupling tests, where through spatial filtering, the particles
are only allowed to interact with certain features of the flow (i.e., thus isolating LSMs and VLSMs)
in the large domain. The goal is to highlight the particle-flow interactions as a function of scale
and inertia, to determine the range of motions which couple with particles of low and high Stokes
numbers. Similar to the effect of truncating the domain size, the particle concentration and the
underlying turbophoresis are underpredicted when VLSMs are absent. The particle clustering effect
is more closely related to LSMs than VLSMs for both kinds of particles (StLSM = 0.3025, 2.275)
as seen from Voronoï tessellation analysis. From a two-dimensional angular distribution function
analysis, for low-inertia particles coupled only with VLSMs (StV LSM = 0.044), particle clustering
is more isotropic than in full simulation in the inner layer, whereas weak, elongated streamwise
anisotropic structures are formed in the outer layer. For high-inertia particles coupled with VLSMs
(StV LSM = 0.331), strong, elongated streamwise anisotropic structures are formed in both the inner
layer and the outer layer. Overall, low-inertia particle transport is dictated both by LSMs and
VLSMs, while high-inertia particles are more influenced by VLSMs in the one-way coupled limit.

In the two-way coupled limit, however, analyses of the slip velocity, fluid Reynolds stress budget,
and interphasial energy transfer highlight the importance of LSMs for both low- and high-inertia
particles. The coupling between low-inertia particles and LSMs is anticipated, since the particle
response time is chosen to match that of the LSMs. The high-inertia particles, by contrast, have a
timescale associated with VLSMs, and yet their two-way coupling is dictated by their interactions
with LSMs—i.e., coupling only with VLSMs provides very inaccurate exchanges of momentum
and energy. This unfortunately does not mean that the effects of VLSMs can be ignored, however,
since their energy content and contribution to the Reynolds stress can be altered by this small-scale
two-way coupling (e.g., high-inertia particles strengthen the VLSMs due to direct interaction in
the outer flow at high wavelengths through modulation of Reynolds stress budget [24]). It is also
observed in this study that VLSMs are an integral part of the spatial distribution of particles. We
emphasize here that care must be taken when interpreting the two-way coupled results, since our
filtering strategy is not intended to perfectly separate certain interactions. When filtering is used on
the velocity fields seen by the particles, the particles ultimately end up in different locations than
they would have otherwise. Thus, quantities such as the slip velocity and energy transfer rates are a
result of two simultaneous effects: inertial response of the particles as well as the difference in the
particle distribution. Rather than concluding that this is precisely how inertial particles will interact
with VLSMs or LSMs in full-spectrum turbulence, the goal is to inform efforts of understanding the
consequences of cutoff filters on particle dynamics, such as those used in LES.

Thus, properly representing these effects remains an ongoing challenge in multiphase LES. In
one-way coupled scenarios, particle-laden LES tends to underestimate turbophoresis with classic
Lagrangian subgrid modes [37,39,73]. In this study, we find that although turbophoresis is induced
by the presence of small-scale structures (i.e., LSMs), it will be underpredicted without considering
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large-scale structures (i.e., VLSMs). These findings have implications on the development of
subgrid models for particle one-way coupling in LES and on developing new Lagrangian subgrid
models for the particle equation of motion which considers the effects of VLSMs. In the two-way
coupled regime, the current study highlights the challenge of developing subgrid models which
can properly capture the modulation of VLSMs [23], but through particle-LSM interactions which
would not be resolved on an LES grid. Simply coupling low- or high-inertia particles to the resolved
velocity field may not be sufficient in highly scale-separated, wall-bounded flows, and points to
areas of future work ranging from ensuring that particle trajectories and distributions are faithfully
replicated (i.e., in the one-way coupled sense) and that their two-way influence is felt appropriately
at the resolved scales.
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